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Abstract—The successful steady-state operation of burning fu-
sion plasmas in planned future devices such as the ITER tokamak
requires understanding of fast-ion physics. Alfvén eigenmodes
are special cases of plasma waves driven by fast ions that are
important to identify and control since they can lead to loss
of confinement and potential damage to the inner walls of a
plasma device. The goal of this work is to compare machine
learning-based systems trained to classify Alfvén eigenmodes
using CO2 interferometer data from a labelled database on the
DIII-D tokamak. A Long-Short Term Memory (LSTM) network
is trained from scratch using simple spectrogram representations
of the CO2 phase data. The model is trained using a single chord
(sequence) per training step. Results show a total true positive
rate of = 90% and a false positive rate of = 18%. This paper
demonstrates the potential of applying machine learning models
to detect and identify different classes of Alfvén eigenmodes
for real-time applications in steady-state plasma operations that
could potentially drive actuators to mitigate Alfvén eigenmode
impacts.

Index Terms—Fusion Energy, Machine Learning Classification,
Alfvén Eigenmodes, CO2 Interferometry, DIII-D Tokamak

I. INTRODUCTION

The success of nuclear fusion devices depends on well
behaved populations of super-thermal particles that slow down
in the bulk of the plasma [1]. Well confined alpha particles
born from fusion reactions could be recycled and provide
enough heat to sustain an ignited burning plasma. Unconfined
fusion born alpha particles can carry away fusion power to
the first walls and degrade the performance of the plasma [2].

External heating systems such as neutral beam injection (NBI)
or radio frequency (RF) waves can produce populations of
energetic particles (EP) useful for momentum transfer and
current drive [3]. However, fusion born and externally driven
EPs can resonate with special cases of plasma waves called
Alfvén eigenmodes (AEs), exacerbate unstable plasma con-
ditions, lead to a quench of reactions and degrade fusion
performance.

Detection and control of AEs during real-time experiments
is important for the realization of fusion energy. The Inter-
national Thermonuclear Experimental Reactor (ITER) is the
largest fusion device in the world and planned to generate more
power than the heat required to produce fusion reactions [4].
AEs are commonly observed in currently operational fusion
devices [5], [6], and are predicted to occur in ITER [7]–[12].
It is a mission critical goal for the Plasma Control System
(PCS) at ITER to detect and control AEs in high performance
plasmas that maintain fusion burn and mitigate damage to the
inner walls of the machine vessel [13], [14]. A considerable
effort in the fusion community is to determine the best set
of external actuators that would control AE instabilities and
alpha losses [15]. Currently, NBI, electron cyclotron resonance
heating or current drive are three of the most promising
techniques. Predictions from data-driven models can provide
more insights in this area and pave the path towards ITER AE
control.

Machine Learning (ML) models trained using experimental
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data can be implemented into the PCS at fusion devices for the
optimization of EP self-heating, current drive efficiency and
mitigation of first wall impacts from losses. There is a need
in the community for models with quick response times (mil-
liseconds) that could accurately detect the presence of AEs in
real-time experiments [16]. Large sets of experimental data are
routinely collected at the DIII-D National Fusion Facility that
are suitable for machine learning-based analysis techniques.
Many operational regimes, scenarios and parameter spaces
can be investigated with this ML-based assistance. Also, these
models can be initially trained offline on large amounts of
data and later get adapted to the new data offline or online.
An example appears in [16].

Machine learning applied to challenges in fusion energy
is an emerging area of research. One of the most developed
fields using ML methods is disruption mitigation [17]–[24],
where models are trained to predict disruptions to the plasma
that could be damaging to the walls of the vessel. However,
ML applications in EP physics offers exciting opportunities
with only a few existing studies to date. For example, deep
learning networks are trained to automatically detect magneto-
hydrodynamic (MHD) and AE activity using manually-labeled
targets and magnetics data from the TJ-II stellarator [25] and
COMPASS tokamak [26]. Also, recent work detected AEs us-
ing supervised learning techniques [25]–[27], and data mining
techniques plasma fluctuation extraction using clustering and
time-series for event identification [28], [29].

There has been significant progress in the area of classifying
AEs using machine learning-based models and high resolution
electron-cyclotron emission (ECE) data [30], [31]. Previous
work used reservoir computing networks (RCN) to classify
AEs observed at DIII-D using the large labeled database
discussed in more detail in subsection II-B. This state-of-the-
art (SOTA) model was trained using the AE-EP database to
classify and predict AEs using time-series from the 40-channel
ECE diagnostic on the DIII-D tokamak [30]. Following the
RCN work, a manually labeled database of 26 discharges
based on the original large DIII-D database was used to train
simple neural-network-based models for spatiotemporal local
identification of four AEs [31].

The goal here is to build on the prior work presented in [30],
train two new machine learning architectures and compare
their performance. Our prior work used ECE data and we
instead use CO2 interferometer data to train machine learning
models. Also, we compute FOURIER transforms for the
inputs unlike in our prior work, which used the 1D signals for
training. In [30], Reservoir Computing Networks are trained
to detect AEs and we instead train a Linear Regression (LR)
model and a Long-Short Term Memory (LSTM) Network
separately from scratch. We compare the results of these new
models and aim to achieve performance values seen in our
prior work. Both the LR and LSTM model use only one CO2

chord (sequence) per step during the training process, which
is also different in [30] since all 40 ECE channels are stacked
and used as input for the RCN model.

This paper is organized as follows: The CO2 interferom-

Fig. 1. A layout of the CO2 interferometer at DIII-D. Vertical chords V1,
V2 and V3 are located at major radii Rm of 1.48m, 1.94m and 2.10m,
respectively. The horizontal chord R0 is located at the midplane (Z = 0m).
The black “ovals” are contours of constant magnetic flux with the outermost
representing the last closed magnetic flux surface, and the × symbol is the
magnetic axis.

eter system at DIII-D, large AE-EP database and interesting
challenges are discussed in section II. The classification and
performance of the LR and LSTM models are reported in
section III. Conclusions are drawn in section IV.

II. EXPERIMENTAL SETUP

A. Multi-chord CO2 Interferometer

The two-color vibration compensated CO2 interferometer
system installed on the DIII-D tokamak consists of three
vertical and one horizontal chord. Figure 1 shows a layout of
the diagnostic system. The full 3D toroidally shaped plasma is
described by rotating this cross-section 360◦ about a vertical
centerline axis located at Rm = 0 m (donut-shaped vessel).
Each of these chords makes line integrated measurements of
the electron density in the plasma, and are digitized for 9
seconds per discharge at a rate of 1.67 MS/s. Several signals
are available and we use the CO2 phase data in this work since
AEs are well above typical mechanical vibration frequencies
and it can be acquired by the Plasma Control System (PCS) in
real time for future actuator driven mitigation of AE impacts.

Spectral analysis of the CO2 interferometer diagnostic time
series data is commonly done in the energetic particle com-
munity to detect AEs [32]. Computing spectrograms removes
low frequency noise and machine vibrations observed in the
data. Coherent activity for a given discharge can be studied
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Fig. 2. An example crosspower spectrogram between chords V2 and R0
for shot 170677. Four plasma instabilities (EAE, TAE, RSAE and BAE) are
labelled by visual inspection.

by calculating windowed crosspower spectrograms between
two chords. An example is shown in Figure 2. Post-shot
identification of AEs using crosspower spectra is possible, but
is time intensive and requires extensive domain knowledge.
In this work, we instead make identification instantaneous
and simple by training machine learning models using simple
magnitude spectrograms of CO2 interferometer data.

B. The Large 2009–2017 DIII-D AE-EP Database

Recent work produced a database that is suitable for
machine learning analysis. It includes the occurrences of
six plasma instabilities: ellipticity (EAE), toroidal (TAE),
reversed-shear (RSAE), beta-induced (BAE), low-frequency
mode (LFM), and energetic particle-induced geodesic acoustic
mode (EGAM) [33] . These flags sample a variety of plasma
conditions or mode activity, and occur during the first 1.9 s
due to the q profile steadily evolving during that phase
of the discharge. Since flags are timestamps and originally
motivated by physics analysis, there are several challenges for
ML classification that are addressed in the remainder of this
section.

After adapting the original nomenclature of Heidbrink et al.,
the database was discovered to have sparse temporal represen-
tation for LFM and EAE. In an effort to detect modes with
flags having the highest degree of confidence, only stable (0)
and unstable (2) flags are considered and made binary (one-hot
encoded) as described in [30]. With these changes, labels 0 and
1 indicate the AE is not present or present, respectively. Due to
the sparsity and campaign specific representation of LFM and
EAE, random splitting is preferred over chronological splitting
of the training and validation set. Figure 3 shows the CO2

interferometer training and validation class distribution for
1069 available shots. There is a large imbalance favoring TAE
and RSAE since they occur frequently in many experimental
campaigns.

Since the labels are single timestamps for each AE at semi-
arbitrary points throughout the database, temporal widening of
the labels is necessary for accurate ML predictions. Windows
of 250ms centered about the timestamp approximates the time
duration of each AE. Post-processing the expert marked flags
by interpolating over a window of 250ms adequately prepares
the proper labels for ML training.

EAE TAE RSAE BAE LFM
AE Type
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Fig. 3. Class distribution for expert-labeled AEs in the CO2 interferometer
dataset. The entire dataset is randomly shuffled into 801 training and 268
validation samples. There are clearly more RSAE and TAE labels and
relatively few instances for EAE, BAE and LFM, making this classification
problem highly imbalanced.

Reporting accuracy would be misleading since a model
outputting all zeros would be higher than 94% accurate and
still miss the vast majority of AE activity. Thus, the metrics
of success for this work are the following: True Positive
Rate, TPR = TP/(TP + FN), and False Positive Rate,
FPR = FP/(FP+TN). TP and TN are outcomes where the
ML model correctly predicts the positive and negative label.
Conversely, FP and FN are outcomes where the ML model
incorrectly predicts the positive and negative label.

Given all of the challenges and initial inspection of the
data, this project is framed as a class imbalanced multilabel
multi-class classification problem. Although these challenges
similarly applied to the prior work, excellent classification
performance was achieved, with a true positive rate of 91%
and a false positive rate of 7%, see Table III of [30]. In
this work, the aim is to match these results using new data
(CO2 interferometer) and new models (LR and LSTM) for the
potential future application of Multi-Modal Machine Learning
techniques in real-time control algorithms.

III. CLASSIFICATION AND PERFORMANCE

An exploratory approach is implemented and ML models
are trained using CO2 interferometer data to detect AEs. First,
we train a Linear Regression model for a linear baseline tech-
nique. Then, we train a Recurrent Neural Network with Long-
Short Term Memory cells for comparison. After computing
spectrograms, we address two major goals in this work:

1) Compare different machine learning models, i.e., LR and
LSTM architectures. The different models are introduced
in subsection III-B and subsection III-C, respectively.

2) Determine if training using a single CO2 chord per
training step is sufficient to detect AEs, and which chord
shows the best performance. This and the overall results
are shown in subsection III-D.

A. Inputs

Simple magnitude spectrograms are prepared as input for
the LR and LSTM models. Starting point for the feature set is
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Fig. 4. Workflow of the “windowed” LSTM training process. Successive
windows of ∼ 280ms and 75% overlap are concatenated and inserted into
the LSTM during the training process. Since this overlapping method creates
bins of ∼ 70ms that will intersect several windows for the predictions of a
given discharge, the predictions are collected such that the average AE score
for all intersecting windows is deposited into this smaller bin.

the short-term FOURIER transform. Therefore, the input signal
stream is divided into overlapping frames, and each frame
has a spectrum computed. The final magnitude spectrogram
is obtained by computing the absolute values of all spectra.
Based on preliminary studies, the magnitude spectrograms are
computed with a window length of 4.9ms and an overlap
of 80%. Also, the spectrograms use linear detrending and
hanning windows. Finally, all spectrograms are downsampled
by applying a maxpool function (8,4) to local frequency-time
blocks in both directions making the final input shapes = (time,
frequency) = (142, 508). Maxpooling is common in computer
vision tasks and works well in this study.

Although both models “see” identical simple spectrograms,
each model processes them differently. For a given discharge,
the LSTM will process both spectrograms in windows of
∼ 280ms with 75% overlap per training step. These settings
are close to the original label length of 250ms and produce
predictions over the same window. Since there are many over-
lapping windows for a given discharge due to the successive
concatenation, averaging over smaller sub-windows ∼ 70ms
is necessary to collect the outputs. Figure 4 shows a workflow
of this procedure. On the other hand, the LR model uses
windowing in a slightly different manner. Although the model
processes 1D vectors of frequencies per training step, frame
stacking of nearby timestamps is implemented to provide the
LR model temporal information about the past and future
(±125ms) AE activity.

B. Linear Regression

Linear regression is the method chosen here since it pro-
vides a baseline for Reservoir Computing Networks, where
the output weights are trained using linear regression. RCN
classification was the method used in our prior work [30] to
detect AEs using ECE data. An important advantage of using
linear regression compared to other methods such as logistic
regression is the online adaption in real-time control.

The Linear Regression model in this work is the conven-
tional technique using Tikhonov regularization. The inputs are
the spectrograms, and the model maps the spectral information
to an AE score. All discharges are concatenated into a matrix
X and a column of ones are added for the linear term. The
labels are similarly collected into a matrix y. Also, frame

TABLE I
TOTAL RATES FOR BOTH MODELS

USING A THRESHOLD OF 0.1.

Linear
Regression

LSTM

TPR 0.86 0.90
FPR 0.19 0.18

stacking over 250ms windows is implemented at this point
to provide the LR model with nearby temporal information
during the training process. The mapping matrix is defined as
follows:

Wout =
(
XTX+ αI

)−1
XTy, (1)

where α is the regularization parameter. Since the sequences
are linearized (discharge concatenation step), building Wout

becomes “1-shot” training and the process is very quick,
particularly since the terms XTX and XTy in Equation (1)
can be computed incrementally, as shown in [34].

C. LSTM

The base of the architecture consists of a LSTM block
of three layers using 64 nodes per layer and relu activation
function. The weights of each layer are initially set using
uniform variance scaling [35]. The output of the LSTM is a
vectorized feature map of length 64 and is input directly into
an MLP block at the head of the network consisting of one
50% dropout layer followed by three layers with 128 nodes per
layer using relu activation and a final classification layer with 5
nodes using sigmoid activation. The LSTM is trained using the
Binary Crossentropy Loss Function and Adam Optimizer with
a learning rate of 1×10−4. The LSTM block considers mem-
ory in the inputs using recurrent connections, and the MLP
functions as a fully connected feed-forward neural network.
The hyperparameters were optimized by scanning values and
observing performance on three selected discharges.

D. Results

The final classification results are summarized in Table I
and show high performance. The LSTM rates have similar
performance to the SOTA technique from the prior work [30].
The LSTM model has higher TPR and lower FPR since it
can better identify the least common modes. Figure 5 shows
the Linear Regression predictions over the entire validation set
for LFM. Frame stacking was not enough to produce strong
predictions and there is no discernible aggregate shape.

The F2 score is a harmonic mean of the precision and recall
metrics, where β = 2 in the following equation:

Fβ =
1 + β2

β2

Recall +
1

Precision

. (2)

The F2 score gives more weighting to TPR, and this metric
is computed for both models across each chord in Figure 6.
The LSTM model performs better than the LR model and
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Fig. 5. Predictions for LFM using the Linear Regression model are low
and don’t provide much information. Recurrent connections are necessary for
detecting this mode.
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Fig. 6. F2 scores for the Recurrent Neural Network with Long-Short
Term Memory cells and Linear Regression Model show the former performs
consistently better. Also, predictions on chord V2 are slightly better than the
other three chords.

chord V2 has slightly higher performance than the other three
chords. Deep layers with recurrent connections are necessary
to capture the patterns of the least common modes. Therefore,
the remainder of this section will focus on the LSTM model
and its predictions.

Only a few hyperparameters had a noticeable effect on the
performance of the LSTM model. Adding a third LSTM layer
and increasing the number of LSTM nodes to 64 improved the
predictions for LFM. With less model capacity, the network
was incapable of triggering and output mostly 0 for this mode.
Improved performance for LFM with the addition of layers and
nodes is expected since LFMs have a unique “christmas light”
pattern [33] that would be more sensitive to networks with
increased temporal memory. Changes for hyperparameters in
the MLP block (layers, nodes or dropout) or further increasing
the capacity of the LSTM block had little effect on the
performance.

The TPR and FPR curves for the LSTM model are
displayed in Figure 7. TAE and RSAE have the best classifi-
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Fig. 7. TPR (solid) and FPR (dashed) curves for the LSTM model.

cation performance since these modes occur most frequently
throughout the database and are relatively easier to detect. TAE
and RSAE often occur in the middle of the frequency range
and for a long time in many discharges. Since these modes
occur frequently, they will have the largest impact on the total
TPR and FPR. On the other hand, predictions for EAE, BAE
and LFM are expected to be lower since they do not appear
as much in the database. Nevertheless, the LSTM is able to
capture their patterns by taking advantage of memory in the
recurrent connections.

The relatively larger FPR for RSAE and TAE indicate
that the LSTM model slightly overestimate detection for these
modes. Although effects from the quality of the training data
and overfitting are likely to contribute, the partially flagged AE
activity in the original database are likely to have a substantial
effect. Each model will likely identify AEs that are marked
not present, but will really have AE activity in the selected
discharges, see Figure 8. Also, unflagged regions could be
areas where the interpolated training window of 250ms was
not large enough to capture the full domain of the AE activity.
Figure 9 shows an example of this behavior. Although these
issues influence the overall performance, clearly the LSTM
model is still capable of learning the patterns associated with
the AE activity.

Shot 178636 and 175985 are interesting examples, where
the LSTM model performs very well for the least common
modes. Although shot 178636 is difficult to classify since there
is a lot of AE activity, the LSTM is capable of identifying all
four modes, see Figure 10. Predictions align well with the
provided labels. Shot 175985 is another example of a difficult
to predict discharge, only this one contains EAE. Although
predictions are light for this mode, the model identifies the
presence of EAE, see Figure 11. For both of these shots, it was
important to build models with sufficient memory capabilities
to capture temporal information.

IV. CONCLUSION

A Linear Regression Model and a Recurrent Neural Net-
work with Long-Short Term Memory cells are trained us-
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Fig. 8. An interesting example where the LSTM model is robust enough to
capture activity for TAE and RSAE in shot #132605, where labels indicate
all modes are not present. Orange pixels show that the predictions are able to
detect the AE activity observed by human inspection in the dotted oval.

Fig. 9. LSTM predictions using simple spectrograms as input for discharge
#144282. White lines indicate the “ground truth” areas, which is a 250ms
window centered about the original expert made timestamp (in this case the
timestamp is located at 500ms). The LSTM is able to predict AE activity in
regions where the labels are marked not present.

ing CO2 interferometer data and labels from the large AE-
EP database on the DIII-D tokamak. The inputs are simple
magnitude spectrograms, and both models use one CO2 in-
terferometer chord per step during training. Predictions are
made binary by thresholding the outputs for each mode. For
the LSTM model, the total TPR = 90% and FPR = 18%
using a threshold value of 0.1 (Linear Regression also has
high performance). Predictions are most accurate for CO2

interferometer chord V2. These results are in close agreement
of the state-of-the-art technique in prior work, and show

Fig. 10. LSTM predictions using simple spectrograms as input for shot
#178636. “Ground-truth” labels are denoted by the white strikethroughs. The
model is able to correctly identify the least common mode, LFM, and the rest
of the AEs. Also, the model is robust enough to make good predictions for
times before 620ms, where the curated database doesn’t say anything about
the AE activity.

Fig. 11. Identical input and model setup as Figure 10, only predictions are
for shot #175985. Although predictions are light, this example shows good
agreement for the second least common mode, EAE, and all other modes.

detection using only one chord is possible. This work is
useful for the implementation of ML systems into real-time
algorithms on the Plasma Control System for the detection and
control of AEs in upcoming experiments at DIII-D. It would
also be interesting to perform cross-machine classification
using spectrograms from a different device in future work.
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